C++ is fun - Part Nine
at Turbine/Warner Bros.!

Project 1

* For people who are still working on Project 1,
good news! Extension until Project 2 (May 15)

Syllabus

1) First program and introduction to data types and control structures with
applications for games learning how to use the programming environment Mar 25-27
2) Objects, encapsulation, abstract data types, data protection and scope April 1-3
3) Basic data structures and how to use them, opening files and performing
operations on files — April 8-10

4) Algorithms on data structures, algorithms for specific tasks, simple AI and planning
type algorithms, game Al algorithms April 15-17

Project 1 Due — April 17

5) More Al: search, heuristics, optimization, decision trees, supervised/unsupervised
learning — April 22-24

6) Game API and/or event-oriented programming, model view controller, map reduce
filter — April 29, May 1

7) Basic threads models and some simple databases SQLite May 6-8

8) Graphics programming, shaders, textures, 3D models and rotations May 13-15
Project 2 Due May 15

9) How to download an API and learn how to use functions in that API, Windows
Foundation Classes May 20-22

10) Designing and implementing a simple game in C++ May 27-29

11) Selected topics — Gesture recognition & depth controllers like the Microsoft
Kinect, Network Programming & TCP/IP, OSC June 3-5

12) Working on student projects - June 10-12

Final project presentations Project 3/Final Project Due June 12

If you want to grab some media files
for the following demos, link:

http://wps.aw.com/aw_gaddis _games_1/114/29318/7505573.cw/index.html

Media Files
The media files contain graphics and audio files that can be used
in student projects.

MediaFiles_1.zip
MediaFiles_2.zip

MediaFiles_3.zip <) I& DarkGDK

Develop powerful and cool 2D / 3D games
with Dark GDK and Visual C++ 2008 Express

o %
L 4

Free Professional Game Development Environment

The Game Creators are pleased to announce that their flagship C++ game development package, Dark GDK is now
included free of charge with Microsoft Visual C++ 2008 Express, part of the Microsoft Visual Studio Express range.

Yet another GDK
DARK GDK

http://www.thegamecreators.com/?m=view_product&id=2128&page=index

ltems “A” and “B”

Please fill in the paper with two things you would like more
information or clarification on that we’ve covered already, that
you want covered in the future, or that would help you with
your project: items “A” and “B.”

Foundations of Game API’s,

Typical game phases

etc.

The program starts.

Initialization

o~ Resources, such as graphic
images and sounds, are loaded
and the game is setup for play.

Game Loop

Most of the game code is
in a loop that executes over
and over, as long as the game

is in play.

Shutdown

e When the game ends, any data
that needs to be kept is saved.

The program ends.

The Structure of a Typical Game Program

Virtually all game programs are structured into the following three general phases:

e Initialization—The initialization phase occurs when the program starts. During
initialization, the program loads the resources that it needs, such as graphic im-
ages and sound files, and gets things set up so the game can play.

e Game Loop—This is a loop that repeats continuously until the game is over. During
each iteration of the loop, the program gets the latest input from the user, moves ob-
jects on the screen, plays sounds, and so forth. When the game is over, the loop stops.

e Shutdown—When the game is over, the program saves any data that must be
kept (such as the user’s score), and then the program ends.

is still true, you will not actually see the main function in any of your C++ programs
that use the AGK. This is because graphics programming can be quite complex, and
the AGK is designed to handle much of that complexity for you. As a result, the main
function in an AGK program is hidden.

Instead, you will work primarily with three functions shown in the following pro-
gram template:

// Includes, namespace and prototypes
#include "template.h"
using namespace AGK;

app App;

1
2
3
4
5
6 // Begin app, called once at the start
7 void app::Begin(void)

8 {

9 1}

10

11 // Main loop, called every frame

12 void app::Loop (void)

13 ¢
14)
15

16 // Called when the app ends
17 void app::End (void)

18 {

19)

Figure 7-2 Sequence of function execution in an AGK program

The program starts.

The app: :Begin function executes
once, when the program starts.

The app: :End function executes
once, when the program ends.

void app::Begin(void)

{

}

void app::Loop (void)
{

}

void app::End (void)
{

}

The program ends.

The app: :Loop function
executes over and over, as
long as the program is running.

The AGK has two ways of handling screen coordinates. The default method uses a
percentage-based coordinate system where the screen coordinates start in the upper-
left corner at (0, 0) and end in the lower-right corner at (100, 100). This is shown
in Figure 7-9. As you can see from the figure, the displayable area does not fill the
entire window.

Figure 7-9 The percentage-based screen coordinate system

4 — ™\
8 ' Percentage Based Coordinate System © | B e

Screen Center
(50, 50)

Displayable ! *

Area eiiie-

(100, 100)

The second method, which we will use in this book, is called virtual resolution.
It is somewhat easier to use than the percentage-based system because it is based
on the screen size of the window. The default window that is displayed by an
AGK program is 640 pixels wide and 480 pixels high. We say that the window
has a resolution of 640 by 480. In a window that is 640 pixels wide by 480
pixels high, the coordinates of the pixel at the bottom-right corner of the screen
are (639, 479). In the same window, the coordinates of the pixel in the center of
the screen are (319, 239). Figure 7-10 shows some coordinates of a resolution-
based system.

® ' Resolution Based Coordinate System |)

Screen Center

(319, 239)

;

(639,479)

S

Notice that the pixels at the far right edge of the screen have an X-coordinate of
639, not 640. This is because coordinate numbering begins at 0 in the upper-left
corner. Likewise, the pixels at the bottom edge of the screen have a Y-coordinate of
479, not 480.

Program 7-1 (VirtualResolutionSetup)

// Includes, namespace and prototypes
#include "template.h"
using namespace AGK;

app App;

// Constants for the screen resolution
const int SCREEN WIDTH = 640;
const int SCREEN HEIGHT = 480;

o~ WU = WwWwN -

[
o v

// Begin app, called once at the start
void app::Begin(void)

{

== e
W N

// Set the wvirtual resolution.
agk::SetVirtualResolution(SCREEN_WIDTH, SCREEN_ HEIGHT);

-
Ul

}

-
-~ o

// Main loop, called every frame
void app::Loop (void)

{

}

N NN ==
N = O W

// Called when the app ends
void app::End (void)

{

}

N NN
U W

Sprites

Graphic images are used extensively in computer games. The graphics for the back-
ground scenery, the game characters, and practically everything else are images that
are loaded from bitmap files. The graphic images that are displayed in a computer
game are commonly known as sprites. The AGK provides many functions for creating
and using sprites.

To create a sprite in an AGK program, you use the agk: :CreateSprite function. Here
is the general format that we will typically use:

agk::CreateSprite(SpriteIndex, ImageFile);
Here is a summary of the two arguments that you pass to the function:

e SpriteIndex is the sprite index, which is a number that identifies the sprite in
your program. The sprite index can be an integer in the range of 1 through
4,294,967,295. Once the sprite is created, you will use its sprite index to identify
it in subsequent operations.

e ImageFile is the name of the file that contains the image. This can be the name

of any image file of the .png, .jpg, or .bmp file formats.

For example, suppose we have an image file named LadyBug.png that we want to use
as a sprite. The following statement shows how we can create the sprite, and assign 1
as its sprite index:

agk::CreateSprite(1l, "LadyBug.png");

When a sprite is created, its default position on the screen will be the upper-left corner,
at the coordinates (0, 0).

Location of the template folder that holds your project’s graphic files

o |) e |
@Uv‘, « Documents » AGK » -]o,'l Secrch AGH 0
File Edit View Tools Help
Organize v) Open Share with E-mail Bum » (v 1l ®
¢ Favorites . Documents library e N B
T Desktop AGK -
B zownlocds g | DE
23 . L | Players
. Recent Places Projects
i) This is the folder that
Libraries s inet?
C AGK.exe holds your project’s
1. Audio Books AGK.xt h fl
5. Books -, . grap IC Tiies.
(Liconico
i Dpcummnts (% uninstall.exe
@' Music
& Pictures L

NOTE: The template folder that holds your project’s graphic files will be created
the first time you load the template project in Visual Studio.

Understanding the Backbuffer and Syncing

Although the agk::CreateSprite function creates a sprite in memory, it does not dis-
play the sprite on the screen. This is because the AGK keeps a copy of the output
screen, known as the backbuffer, in memory. When the AGK draws an image, it draws
the image on the backbuffer instead of the actual screen. When you are ready for the
contents of the backbuffer to be displayed on the actual screen, you call the agk::Sync
function. (The word sync stands for synchronize. When you call the agk: :Sync func-
tion, it synchronizes the screen with the backbuffer.)

You call the agk::Sync function in the app::Loop function. Calling the agk::Sync
function is typically the last operation performed in app::Loop, after all other actions

have taken place.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

agk::Sync()

// Constant for the sprite index
const int SPRITE INDEX = 1;

// Begin app, called once at the start
void app::Begin(void)

{
// Set the virtual resolution.
agk::SetVirtualResolution(SCREEN WIDTH, SCREEN HEIGHT);
// Create the ghost sprite.
agk::CreateSprite(SPRITE_ INDEX, "ghost.png");

}

// Main loop, called every frame

void app::Loop (void)

{
// Display the screen.
agk::Sync();

}

// Called when the app ends

void app::End (void)
{
}

// Includes, namespace and prototypes
#include "template.h”

using namespace AGK;

app App;

// Constants for the screen resolution
const int SCREEN_W!IDTH = 640;

const int SCREEN_HEIGHT = 480;

// Constants for the sprite indices
const int HOUSE_INDEX = 1;

const int GHOST_INDEX = 2;

// Constants for the ghost's position
const float GHOST_X = 200;

const float GHOST_Y = 150;

// Begin app, called once at the start

void app::Begin(void)

{

// Set the virtual resolution.
agk::SetVirtualResolution(SCREEN_WIDTH, SCREEN_HEIGHT);
// Create the haunted house sprite for the background.
agk::CreateSprite(HOUSE_INDEX, "haunted_house.png");
// Create the ghost sprite.
agk::CreateSprite(GHOST_INDEX, "ghost.png");

// Set the ghost's position.
agk::SetSpritePosition(GHOST _INDEX, GHOST_X, GHOST_Y);
}

// Main loop, called every frame

void app::Loop (void)

{

// Display the screen.

agk::Sync();

}

// Called when the app ends

void app::End (void)

{

}

Ghost is haunting the house! :{

fo =
B | template ‘DM

Getting a Sprite’s X- and Y-Coordinates

You can get the current X- and Y-coordinates of any existing sprite by calling the
agk: :GetSpriteX and agk::GetSpriteY functions, passing the sprite index as an argu-
ment. The agk: : GetSpriteX function returns the sprite’s X-coordinate, as a float, and
the agk::GetSpriteY function returns the sprite’s Y-coordinate, also as a float.

For example, assume that GHOST INDEX is a valid sprite index from the previously
shown program. The following statements declare two variables: spriteX and spritey.
The spritex variable is initialized with the value that is returned from the
agk: :GetSpriteX function, and the spriteY variable is initialized with the value that
is returned from the agk: :GetSpriteY function. As a result, the spritex variable will

hold the sprite’s X-coordinate, and the spritey variable will hold the sprite’s
Y-coordinate.

float spriteX = agk::GetSpriteX(GHOST INDEX);
float spriteY = agk::GetSpriteY (GHOST INDEX);

Getting the Width and Height of a Sprite

You can get the width of an existing sprite by calling the agk::GetSpritewidth func-
tion, passing the sprite index as an argument. The function returns the width of the
sprite as a float. Assuming that SPRITE INDEX is a valid sprite index, the following
statement shows an example.

float spriteWidth = agk::GetSpriteWidth(SPRITE INDEX);

This statement declares a float variable named spritewidth, initialized with the
width of the sprite that is specified by SPRITE INDEX.

You can get the height of an existing sprite by calling the agk: : GetSpriteHeight func-
tion, passing the sprite index as an argument. The function returns the height of the
sprite as a £loat. Assuming that SPRITE INDEX is a valid sprite index, the following
statement shows an example.

float spriteHeight = agk::GetSpriteHeight(SPRITE INDEX);

This statement declares a float variable named spriteHeight, initialized with the
height of the sprite that is specified by SPRITE INDEX.

template f template

ey

Original Size Scaled by 2 in both the
X and Y directions

Rotating a Sprite
You can use the agk::SetSpriteAngle function to rotate a sprite around its center
point. A sprite can be rotated any angle from 0 degrees through 359 degrees. Here is
the general format of how you call the function:

agk::SetSpriteAngle(SpriteIndex, Angle);
SpriteIndex is the index of the sprite that you want to rotate, and Angle is a
floating-point value indicating the angle of rotation, in degrees. Assuming that
SPRITE INDEX is a valid sprite index, the following statement rotates the specified
sprite 90 degrees:

agk::SetSpriteAngle(SPRITE INDEX, 90);

You can determine the current rotation of a sprite with the agk::GetSpriteAngle
function. You pass the function a sprite index as an argument, and it returns the
number of degrees that the sprite has been rotated. Assuming that SPRITE_INDEX is
a valid sprite index, the following statement shows an example:

float angle = agk::GetSpriteAngle(SPRITE INDEX);

Changing the Sync Rate

The sync rate, or frame rate, is the number of umes per second that app: :Loop function
is executing. By default, the function executes approximately 60 times per second. Recall
that each iteration of the app: : Loop function is called a frame. If the function is executing
60 times per second, we say that the program has a sync rate of 60 frames per second.

Sometimes you might want to change the sync rate. For example, in Program 7-9 the
ghost sprite moves very quickly across the screen, and you might want to slow the
program down so you can see the ghost more easily. To slow the program down, you
decrease its sync rate. You use the agk::SetSyncRate function to specify a sync rate.
Here is the function’s general format:

agk::SetSyncRate(FramesPerSecond, Mode);
Here is a summary of the function’s arguments in the general format:

e FramesPerSecond is a float specifying the maximum number of frames per sec-
ond for the program. While the program is running, it will attemprt to execute
the app: :Loop function this many times per second. (We say attempt because the
program might be busy doing so much work that it cannot fully achieve the
specified frame rate.)

® Mode is an int that can be either 0 or 1. When the Mode is 0, the program uses the
CPU less berween frames and requires less power. This can be important for pro-
grams that run on mobile devices. When the Mode is 1, the program will use the CPU
more intensively and consume more power, but the sync rate will be more accurate.

For example, if we want the ghost to move more slowly in Program 7-9, and we aren’t
particularly concerned with CPU usage, we might add the following global constants:

const float FRAMES PER SECOND = 5;
const int REFRESH MODE = 1;

Let’s make the ghost move!

g = T
template o & |£H

Game State

A game can be in different states while it is running. For example, suppose you are
playing a game in which you are driving a car on a racetrack. At any given moment,
the game can be in one of several possible states, including the following:

* You are driving the car in the correct direction on the track.
* You are driving the car in the wrong direction on the track.
* You have crashed the car.

As your programs become more sophisticated, you will usually find that the game loop
must determine the state that the game is in, and then act accordingly. For example, sup-
pose we want to enhance Program 7-10 so that the ghost moves back and forth across
the screen. When the ghost reaches one side of the screen, it reverses directions and goes
toward the opposite side of the screen. When it reaches that side of the screen, it reverses
direction again. At any moment, the program can be in one of the following states:

e The ghost is moving to the right
e The ghost is moving to the left

In the game loop, the program has to determine which of these states the program is
in and then determine whether the sprite has reached the edge of the screen that it is
moving toward. If the sprite has not reached the edge of the screen, it must keep mov-
ing in its current direction. Otherwise, the sprite must reverse its direction. The fol-
lowing pseudocode shows the program’s logic:

- If the ghost is moving to the right

If the ghost has not reached the right edge of the screen
Move the ghost right 10 pixels

Else
Reverse the ghost's direction

End If

- Ese

If the ghost has not reached the left edge of the screen
Move the ghost left 10 pixels

Else
Reverse the ghost's direction

End If

// Includes, namespace and prototypes
#tinclude "template.h"
using namespace AGK;

app App;

// Global constants for screen resolution
const int SCREEN_WIDTH = 640; // Screen width
const int SCREEN_HEIGHT = 480; // Screen height

// Global constants for the ghost sprite

const int GHOST_INDEX = 1; // Ghost sprite index

const float GHOST_START_X = 0; // Ghost's starting X
const float GHOST_START_Y = 150; // Ghost's starting Y
const float GHOST_END_X = 540; // Ghost's ending X
const int INCREMENT = 10; // Amount to move the ghost

// Global constants for the game state
const int MOVING_RIGHT =0;
const int MOVING_LEFT =1;

// Global variable for game state
int g_gameState = MOVING_RIGHT;

// Begin app, called once at the start

void app::Begin(void)

{

// Set the virtual resolution.
agk::SetVirtualResolution(SCREEN_WIDTH, SCREEN_HEIGHT);

// Create the ghost sprite.
agk::CreateSprite(GHOST_INDEX, "ghost.png");

// Set the ghost's position.
agk::SetSpritePosition(GHOST_INDEX,
GHOST_START_X, GHOST_START_Y);
}

// Main loop, called every frame

void app::Loop(void) {

// Get the ghost's current X coordinate.

float ghostX = agk::GetSpriteX(GHOST_INDEX);

// Is the sprite moving to the right side of the screen?

// Is the sprite moving to the right side of the screen?
if (g_gameState == MOVING_RIGHT)

{

// The sprite is moving right. Has it reached the

// edge of the screen?

if (ghostX < GHOST_END_X)

{

// Not at the edge yet, so keep moving right.
agk::SetSpriteX(GHOST_INDEX, ghostX + INCREMENT);
}

else

{

// The sprite is at the right edge of the screen.

// Change the game state to reverse directions.
g_gameState = MOVING_LEFT;

}

}

else

{

// The sprite is moving to the left.

// Has it reached the edge of the screen?

if (ghostX > GHOST_START _X)

{

// Not at the edge yet, so keep moving left.
agk::SetSpriteX(GHOST_INDEX, ghostX - INCREMENT);
}

else

{

// The sprite is at the left edge of the screen.
// Change the game state to reverse directions.
g_gameState = MOVING_RIGHT;

}

}

// Display the screen.
agk::Sync();
}

// Called when the app ends
void app::End (void)

{

}

The agk::Random function can be called in the following general format:
agk::Random()

In this general format, the function returns a random number in the range of 0 through
65,535. For example, after the following statement executes, the number variable will
be assigned a value in the range of 0 through 65,535:

int number;
number = agk::Random();

If you want to specify a range for the random number, you can call the function using
the following general format:

agk::Random(From, To)

In this general format the From argument is the lowest possible value to return and To
is the highest possible value to return. The function will return a random number
within the range of these two values. For example, after the following code executes,
the number variable will be assigned a random value in the range of 1 through 10:

int number;
number = agk::Random(1l, 10);

This is for you ASCII collision guy!!

40 // Main loop, called every frame
41 void app::Loop (void)

42 {

43 // Variables for the ghost's location and alpha value
44 int ghostX, ghostY, ghostAlpha;

45

46 // Get random coordinates.

47 ghostX = agk::Random(0, SCREEN WIDTH);

48 ghostY = agk::Random(0, SCREEN HEIGHT);

49

50 // Get a random value for the ghost's alpha.

51 ghostAlpha = agk::Random(MIN ALPHA, MAX ALPHA);

52

53 // Set the ghost's position.

54 agk::SetSpritePosition(GHOST_ INDEX, ghostX, ghostY);
55

56 // Set the ghost's alpha value.

57 agk::SetSpriteColorAlpha(GHOST INDEX, ghostAlpha);
58

59 // Display the screen.

60 agk::Sync();

61)

This is (also) for you ASCII collision guy!! 8)

¢

Wear a coat.

:

Wear a hat.

:

Wear gloves.

False

Detecting Collisions with a Text Object

You can detect if a single point is within the bounds of a text object’s bounding box
by using the agk: :GetTextHitTest function. Here is the general format of the function:

agk::GetTextHitTest(Text Index, X, Y)

TextIndex is an integer value containing the index number of the text object you want
to check for a collision. The remaining arguments, x and ¥, are floating-point values
for the X- and Y-coordinates of the point that you want to check. The function
returns an integer value of 1 (true) if the point is within the text object’s bounding
box. Otherwise, the function returns 0 (false).

// This program demonstrates collision detection
// with a text object and the mouse pointer.

// Includes, namespace and prototypes
#include "template.h"

using namespace AGK;

app App;

// Constants for the screen resolution
const int SCREEN_WIDTH = 640;
const int SCREEN_HEIGHT = 480;

// Constant for the text object index number.
const int TEXT = 1;

// Constant for the text object size.
const float TEXT_SIZE = 16;

// Constant for the text object alignment.
const int ALIGN_CENTER = 1;

// Constants for the center of the screen.
const float CENTER_X = SCREEN_WIDTH / 2;
const float CENTER_Y = SCREEN_HEIGHT / 2;

// Begin app, called once at the start
void app::Begin(void)
{

// Set the virtual resolution.

agk::SetVirtualResolution(SCREEN_W!IDTH, SCREEN_HEIGHT);

// Set the window title.
agk::SetWindowTitle("Text Object Collision");

// Create the text object.
agk::CreateText(TEXT, "");

// Set the size of the text object.
agk::SetTextSize(TEXT, TEXT_SIZE);

/] QRat tha alianmant Af tha tavt nhiart

// Set the alignment of the text object.
agk::SetTextAlignment(TEXT, ALIGN_CENTER);

// Set the position of the text object.
agk::SetTextPosition(TEXT, CENTER_X, CENTER_Y);
}

// Main loop, called every frame

void app::Loop (void)

{

// Get the mouse coordinates.

float mouseX = agk::GetRawMouseX();
float mouseY = agk::GetRawMouseY();

// Determine if the mouse pointer has hit the text object.
if (agk::GetTextHitTest(TEXT, mouseX, mouseY))

{
agk::SetTextString(TEXT, "Ouch! You hit me.");

}

else

{

agk::SetTextString(TEXT, "l am a text object.");
}

// Refresh the screen.
agk::Sync();
}

// Called when the app ends
void app::End (void)

{

}

.
9.2 Sprite Collision Detection

L

ONCEPT: A collision between sprites occurs when one sprite’s bounding box
comes in contact with another sprite’s bounding box. Collisions
between sprites can be detected.

c When a sprite is displayed on the screen, it is displayed within a rectangle that is

. known as the sprite’s bounding box. The bounding box is the size, in pixels, of the

Spmo:c;lllsion sprite’s image file. If the image file is saved with transparency, then the bounding

Detection box will not be visible, but if the image is created with a black background color as
the transparency, then you can clearly see the bounding box. This is illustrated in
Figure 9-6.

@ NOTE: A sprite’s bounding box will be the size, in pixels, of the sprite’s image file.
For example, suppose you use Microsoft Paint to create an image file that is 64
pixels wide by 96 pixels high. If a sprite uses this image, the sprite’s bounding box
will be 64 pixels wide by 64 pixels high.

Figure 9-6 A sprite displayed inside its bounding box

When one sprite’s bounding box comes in contact with another sprite’s bounding box,
it is said that the two sprites have collided. In games, sprite collisions are usually an
important part of the game play. For this reason, it is important that you can detect
collisions between sprites in your programs.

The AGK provides a function called agk::GetSpriteCollision that determines
whether two sprites have collided. You pass two sprite index numbers as argu-
ments, and the function returns 1 (true) if the bounding boxes of the two sprites
are overlapping or 0 (false) otherwise. The following code shows an example; it
determines whether the sprite referenced by index number 1 and the sprite refer-
enced by index number 2 have collided, and if so, it hides both sprites:

if (agk::GetSpriteCollision(1l, 2))
{
agk::SetSpriteVisible(1l, 0);
agk::SetSpriteVisible(2, 0);
}

Program 9-5 shows a complete example that detects sprite collisions. When the pro-
gram runs, it displays the two bowling ball sprites shown in Figure 9-7. The sprites
move toward each other until a collision is detected. When that happens, they are
reset back to their original positions.

// This program demonstrates how sprite
// collisions can be detected.

// Includes, namespace and prototypes
#include "template.h"

using namespace AGK;

app App;

// Constants for the screen resolution
const int SCREEN_WIDTH = 640;

const int SCREEN_HEIGHT = 480;

// Constant for the image index numbers.
const int BALL1_IMAGE = 1;

const int BALL2 IMAGE = 2;

// Constant for the sprite index numbers.
const int BALL1_SPRITE = 1;

const int BALL2_ SPRITE = 2;

// Constant for ball 1's initial X position.
const float BALL1_X =0;

// Constant for ball 2's initial Y position.
const float BALL2_X =511;

// Constant for the Y position of both sprites.

const float BALL_Y = 175;

// Constant for the distance to move each frame.

const float DISTANCE = 1;

// Begin app, called once at the start
void app::Begin(void)
{

// Set the virtual resolution.

agk::SetVirtualResolution(SCREEN_WIDTH, SCREEN_HEIGHT);

// Set the window title.
agk::SetWindowTitle("Sprite Collision");

// Load the images.

agk::Loadlmage(BALL1_IMAGE, "BowlingBalll.png");
agk::Loadlmage(BALL2_IMAGE, "BowlingBall2.png");

// Lreate tne sprites.

agk::CreateSprite(BALL1_SPRITE, BALL1_IMAGE);
agk::CreateSprite(BALL2_SPRITE, BALL2_IMAGE);

// Set the position of each sprite.
agk::SetSpritePosition(BALL1_SPRITE, BALL1_X, BALL_Y);
agk::SetSpritePosition(BALL2_SPRITE, BALL2_ X, BALL_Y);
}

// Main loop, called every frame

void app::Loop (void)

{

// Get the X-coordinate of each sprite.

float balllx = agk::GetSpriteX(BALL1_SPRITE);

float ball2x = agk::GetSpriteX(BALL2_SPRITE);

// Determine if the two sprites have collided.

if (agk::GetSpriteCollision(BALL1_SPRITE, BALL2_SPRITE))
{

// Reset the sprites to their original locations.
agk::SetSpriteX(BALL1_SPRITE, BALL1 X);
agk::SetSpriteX(BALL2_SPRITE, BALL2_X);

}

else

{

// Move ball 1 to the right.
agk::SetSpriteX(BALL1_SPRITE, balllx + DISTANCE);

// Move ball 2 to the left.
agk::SetSpriteX(BALL2_SPRITE, ball2x - DISTANCE);
}

// Refresh the screen.
agk::Sync();
}

// Called when the app ends
void app::End (void)

{

}

Preview of the future, in the future we
will cover more: Polymorphism in C++

Exceptions

And, Threads

Overview of Standard Library headers

Standard Library
header

<iostream>

<iomanip>

<cmath>

<cstdTib>

<ctime>

Explanation

Contains function prototypes for the C++ standard input and output
functions, introduced in Chapter 2, and is covered in more detail in
Chapter 15, Stream Input/Output.

Contains function prototypes for stream manipulators that format
streams of data. This header is first used in Section 4.9 and is discussed in
more detail in Chapter 15, Stream Input/Output.

Contains function prototypes for math library functions (Section 6.3).

Contains function prototypes for conversions of numbers to text, text to
numbers, memory allocation, random numbers and various other utility
functions. Portions of the header are covered in Section 6.7; Chapter 11,
Operator Overloading; Class string; Chapter 16, Exception Handling: A
Deeper Look; Chapter 21, Bits, Characters, C Strings and structs; and
Appendix F, C Legacy Code Topics.

Contains function prototypes and types for manipulating the time and
date. This header is used in Section 6.7.

Standard Library

header

<vectors>, <list>,
<deque>, <queue>,

<stack>, <map>,

<set>, <bitset>

<cctype>

<cstring>

<typeinfo>

<exception>,

<stdexcept>

<memory>

<fstream>

<string>

<sstream>

<functional>

<iterator>

<algorithm>

<cassert>

<cfloat>
<climits>

<cstdio>

<locale>

Explanation

These headers contain classes that implement the C++ Standard Library
containers. Containers store data during a program’s execution. The
<vector> header is first introduced in Chapter 7, Arrays and Vectors. We
discuss all these headers in Chapter 22, Standard Template Library
(STL).

Contains function prototypes for functions that test characters for certain
properties (such as whether the character is a digit or a punctuation), and
function prototypes for functions that can be used to convert lowercase
letters to uppercase letters and vice versa. These topics are discussed in
Chapter 21, Bits, Characters, C Strings and structs.

Contains function prototypes for C-style string-processing functions. This
header is used in Chapter 11, Operator Overloading; Class string.
Contains classes for runtime type identification (determining data types
at execution time). This header is discussed in Section 13.8.

These headers contain classes that are used for exception handling (dis-
cussed in Chapter 16, Exception Handling: A Deeper Look).

Contains classes and functions used by the C++ Standard Library to allo-
cate memory to the C++ Standard Library containers. This header is used
in Chapter 16, Exception Handling: A Deeper Look.

Contains function prototypes for functions that perform input from and
output to files on disk (discussed in Chapter 17, File Processing).
Contains the definition of class string from the C++ Standard Library
(discussed in Chapter 18, Class string and String Stream Processing).
Contains function prototypes for functions that perform input from
strings in memory and output to strings in memory (discussed in
Chapter 18, Class string and String Stream Processing).

Contains classes and functions used by C++ Standard Library algorithms.
This header is used in Chapter 22.

Contains classes for accessing data in the C++ Standard Library contain-
ers. This header is used in Chapter 22.

Contains functions for manipulating data in C++ Standard Library con-
tainers. This header is used in Chapter 22.

Contains macros for adding diagnostics that aid program debugging.
This header is used in Appendix E, Preprocessor.

Contains the floating-point size limits of the system.
Contains the integral size limits of the system.

Contains function prototypes for the C-style standard input/output
library functions.

Contains classes and functions normally used by stream processing to
process data in the natural form for different languages (e.g., monetary
formats, sorting strings, character presentation, etc.).

Homework Exercises For Next Monday
(Pick 2)
1) Download and install

http://www.appgamekit.com/ (2D only, but simpler)

OR

http://www.ogre3d.org/

OR

DARK GDK

http://www.thegamecreators.com/?m=view product&id=2128&page=index.
Compile, link, and run one of the sample programs.

2) Implement a simple Tic Tac Toe “Al” strategy. Some sample
implementations of the game are at the following two links:
http://courses.ischool.berkeley.edu/i90/f11/resources/chapter06/tic-tac-

toe.py
http://en.literateprograms.org/Tic Tac Toe (Python)

3) Show the value of x after each of the following statements is performed:
a) x = fabs()
b) x = floor()
c) x = fabs()
d) x = ceil()
e) x = fabs()
f) x = ceil()

g) x = ceil(-fabs(+ floor()))

4)

Self-Review Exercises

12.1

12.2

Fill in the blanks in each of the following statements:

a)
b)
)
d)

e)

i)

j)

k)

is a form of software reuse in which new classes absorb the data and behaviors
of existing classes and embellish these classes with new capabilities.

A base class’s members can be accessed in the base-class definition, in derived-
class definitions and in friends of the base class its derived classes.

In a(n) relationship, an object of a derived class also can be treated as an object
of its base class.

In a(n) relationship, a class object has one or more objects of other classes as
members.

In single inheritance, a class exists in a(n) relationship with its derived classes.
A base class’s members are accessible within that base class and anywhere that

the program has a handle to an object of that class or one of its derived classes.
A base class’s protected access members have a level of protection between those of pub-
Tic and access.

C++ provides for , which allows a derived class to inherit from many base class-
es, even if the base classes are unrelated.
When an object of a derived class is instantiated, the base class’s is called im-

plicitly or explicitly to do any necessary initialization of the base-class data members in
the derived-class object.
When deriving a class from a base class with pub1ic inheritance, pub1ic members of the

base class become members of the derived class, and protected members of
the base class become members of the derived class.

When deriving a class from a base class with protected inheritance, pub1ic members of
the base class become members of the derived class, and protected members
of the base class become members of the derived class.

State whether each of the following is #rue or false. If false, explain why.

a)
b)
©)
d)
e)

Base-class constructors are not inherited by derived classes.

A has-a relationship is implemented via inheritance.

A Car class has an 7s-a relationship with the Steeringwheel and Brakes classes.
Inheritance encourages the reuse of proven high-quality software.

When a derived-class object is destroyed, the destructors are called in the reverse order
of the constructors.

5)

Multiple Choice

1L

This is a loop that repeats continuously, until the game is over:

a.
b.
ch

d.

In

an
b.
-

Initialization loop.
Game loop.
Player’s loop.
AGK Loop.

the AGK C++ template, this function executes once, when the program starts:

. app::Begin.
. app::Loop.

app::End.

. app::Start.

the AGK C++ template, this function performs the game loop:

. app::Begin.
. app::Loop.

app::End.

. app: : GameLoop.

the AGK C++ template, this function executes when the program ends:

. app::Begin.
. app::Loop.

app::End.

. app: : Shutdown.

. These are the tiny dots that make up the display area of the screen:

display points.
pixels.
backlights.

d. display elements.

. This is used to identify a specific position within the AGK’s output window:

a. coordinate system.

b.
Gt

d.

position locator.
position Sensor.
memory address.

6) Implement something cool using the App Game Kit, and sprites. Surprise me.

7) Delve into the App Game Kit internals, and describe the collision detection algorithm
the AGK uses for agk::GetSpriteCollision(BALL1_SPRITE, BALL2_SPRITE)

